Search results for "Background Radiation"

showing 10 items of 55 documents

A radiometric and petrographic approach to risk assessment at Alte Madonie Mounts region (Sicily, Italy)

2013

The main goal of this work was to assess the radiological hazard at Alte Madonie Mounts region (north-central Sicily, Italy) in response to rumours of an increase in the incidence of cancer in this area. A correlation between the natural radionuclide contents and the petrographic features of the soil and rock samples was also evaluated. A total of 41 samples of selected soils and rocks were collected, powdered, dried and sealed in 'Marinelli' beakers for 20 d prior to measurement to ensure that a radioactive equilibrium between (226)Ra and (214)Bi had been reached. A gamma-ray spectrometer was used to quantify the radioactivity concentrations. To determine (238)U and (232)Th activities, the…

ActiniumSettore ING-IND/20 - Misure E Strumentazione NucleariMineralogychemistry.chemical_elementRisk AssessmentNuclear physicsPetrographyRadiation MonitoringBackground RadiationSoil Pollutants RadioactiveRadiology Nuclear Medicine and imagingRadiometrySicilyRadioisotopesRadionuclideRadiationGeographyRadiological and Ultrasound TechnologyCarbonate radiaoctivity petrographyThoriumSettore GEO/07 - Petrologia E PetrografiaPublic Health Environmental and Occupational HealthThoriumGeneral MedicineSecular equilibriumUraniumSpectrometry GammaLinear relationshipchemistrySoil waterLinear ModelsPotassiumUraniumEnvironmental scienceRadiometric datingBismuthRadiumRadiation Protection Dosimetry
researchProduct

Correlation of the highest-energy cosmic rays with nearby extragalactic objects.

2007

Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…

Active galactic nucleus[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]Cosmic background radiationFOS: Physical sciencesFluxOsservatorio Pierre AugerCosmic rayanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmici0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsBackground radiationNuclei galattivi attiviPhysicsPierre Auger ObservatorySPECTRUMMultidisciplinary[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMedicine (all); MultidisciplinaryMedicine (all)Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)angular dependence [cosmic radiation]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaExperimental High Energy Physicsddc:500Energy (signal processing)experimental results
researchProduct

Testing standard and nonstandard neutrino physics with cosmological data

2012

Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally pow…

AstrofísicaNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic background radiationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologyPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino oscillationTelescope010303 astronomy & astrophysicsDigital sky surveyPhysicsHubble constantCosmologia010308 nuclear & particles physicsMatter power spectrumBig-bang nucleosynthesisCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionParameterssymbolsBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoData releaseAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Neutrino masses and their ordering: global data, priors and models

2018

We present a Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and CMB observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino ma…

AstrofísicaPhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesAstronomy and AstrophysicsObservableParameter space01 natural sciencesPartícules (Física nuclear)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesPrior probabilityHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry

2011

Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone. The optimum solution would be a low-background counting station capable of both singles and gamma-gamma coincidence spectrometry.

Astrophysics::High Energy Astrophysical Phenomena[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010403 inorganic & nuclear chemistryMass spectrometry01 natural sciencesComprehensive Nuclear-Test-Ban TreatyCoincidence030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciences0302 clinical medicineBackground RadiationAir Pollution RadioactiveNuclideGamma ray spectrometryBackground radiationNuclear PhysicsPhysicsAerosolsRadiation surveillanceRadiationta114GermaniumGamma rayGamma-ray spectrometry0104 chemical sciencesSpectrometry GammaGamma Rays22Na
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological forecasts on thermal axions, relic neutrinos and light elements

2022

One of the targets of future Cosmic Microwave Background and Baryon Acoustic Oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the Early Universe. In this paper we study how these improvements can be translated into constraining power for well motivated extensions of the Standard Model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial $\Lambda$CDM cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyze a m…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and Astrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic Astrophysicsearly Universedark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Space and Planetary Sciencecosmic background radiation cosmological parameters dark matter early Universe cosmology: observationscosmology: observationsHigh Energy Physics::Experimentcosmological parametersAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of cosmic inhomogeneities on SNe observations

2009

We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectgr-qcCosmic background radiationFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeObservational cosmology0103 physical sciences010306 general physicsmedia_commonPhysicsCOSMIC cancer database010308 nuclear & particles physicsCopernican principleRedshiftUniverseLocal Voidsymbolsastro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct